If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2=8
We move all terms to the left:
2p^2-(8)=0
a = 2; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·2·(-8)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*2}=\frac{-8}{4} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*2}=\frac{8}{4} =2 $
| 4(y-4)=23 | | 13x+4=12x-14 | | -6x-7(-4x+2)=96 | | y=300(1+.08)5 | | -3x+3(3x+9)=-33 | | 0.2x-3.2=-3÷5=1.8 | | y=12,000(1+.06)4 | | y2=336 | | 4w-19w=90 | | 0.2x-3.2=5(1.8) | | 3x+43=7×+7x | | -3(6x+8)=-144 | | -7(-3x-3)=-42 | | (16x+4)°=110°=(3x+11)° | | 4x-12+5x=24 | | 6(7x-8)=78 | | 3x+43=7×+7 | | (8m+1)/2+m/3=m+4 | | 15x1=13 | | 4x+5+10x-40+6x+5+90=360 | | 10x=7x−3 | | -62-9x-x=58 | | 10s=7s−3 | | 4x+5+10x-40+6x+5=360 | | -8x+7x-13=6 | | 6y+15=−3 | | −5x+19=−21 | | 4(p-5)-8=2p | | 447=14-n | | 2x-58+5x=47 | | |8z+14|=-30 | | 3x–10+5x=70 |